Phoneme recognition in continuous speech using large inhomogeneous hidden Markov models

نویسندگان

  • R. N. V. Sitaram
  • Thippur V. Sreenivas
چکیده

In this paper we present a novel scheme for phoneme recognition in continuous speech using inhomogeneous hidden Markov models (IHMMs). IHMMs can capture the temporal structure of phonemes and inter-phonemic temporal relationships effectively, with their duration dependent state transition probabilities. A two stage IHMM is proposed to capture the variabilities in speech effectively for phoneme recognition. The first stage models the acoustic and durational variabilities of all distinct sub-phonemic segments and the second stage models the acoustic and durational variability of the whole phoneme. In an experimental evaluation of the new scheme for recognizing a subset of alphabets comprising of the most confusing set of phonemes, spoken randomly and continuously, a phoneme recognition accurary of 83% is observed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Speech Recognition Using Monophone and Triphone Based Continuous Density Hidden Markov Models

Speech Recognition is a process of transcribing speech to text. Phoneme based modeling is used where in each phoneme is represented by Continuous Density Hidden Markov Model. Mel Frequency Cepstral Coefficients (MFCC) are extracted from speech signal, delta and double-delta features representing the temporal rate of change of features are added which considerably improves the recognition accura...

متن کامل

Recognition of voiced sounds with a continuous state HMM

Many current speech recognition systems use very large statistical models using many thousands, perhaps millions, of parameters to account for variability in speech signals observed in large training corpora, and represent speech as sequences of discrete, independent events. The mechanisms of speech production are, however, conceptually very simple and involve continuous smooth movement of a sm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994